Data science in light of natural language processing: An overview
نویسندگان
چکیده
منابع مشابه
An overview of empirical natural language processing.(Natural Language
In recent years, there has been a resurgence in research on empirical methods in natural language processing. These methods employ learning techniques to automatically extract linguistic knowledge from natural language corpora rather than require the system developer to manually encode the requisite knowledge. The current special issue reviews recent research in empirical methods in speech reco...
متن کاملAn Overview of Empirical Natural Language Processing
search on empirical methods in natural language processing. These methods employ learning techniques to automatically extract linguistic knowledge from natural language corpora rather than require the system developer to manually encode the requisite knowledge. The current special issue reviews recent research in empirical methods in speech recognition, syntactic parsing, semantic processing, i...
متن کاملData-Oriented Language Processing. An Overview
Data-oriented models of language processing embody the assumption that human language perception and production works with representations of concrete past language experiences, rather than with abstract grammar rules. Such models therefore maintain large corpora of linguistic representations of previously occurring utterances. When processing a new input utterance, analyses of this utterance a...
متن کاملNatural Language Processing in Game Studies Research: An Overview
Natural language processing (NLP) is a field of computer science and linguistics devoted to creating computer systems that use human (natural) language as input and/or output. The authors propose that NLP can also be used for game studies research. In this article, the authors provide an overview of NLP and describe some research possibilities that can be explored using NLP tools and techniques...
متن کاملAn Overview of Probabilistic Tree Transducers for Natural Language Processing
Probabilistic finite-state string transducers (FSTs) are extremely popular in natural language processing, due to powerful generic methods for applying, composing, and learning them. Unfortunately, FSTs are not a good fit for much of the current work on probabilistic modeling for machine translation, summarization, paraphrasing, and language modeling. These methods operate directly on trees, ra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Procedia Computer Science
سال: 2018
ISSN: 1877-0509
DOI: 10.1016/j.procs.2018.01.101